Semantics-based classification of rule interestingness measures
نویسندگان
چکیده
Assessing rules with interestingness measures is the cornerstone of successful applications of association rule discovery. However, as numerous measures may be found in the literature, choosing the measures to be applied for a given application is a difficult task. In this chapter, the authors present a novel and useful classification of interestingness measures according to three criteria: the subject, the scope, and the nature of the measure. These criteria seem essential to grasp the meaning of the measures, and therefore to help the user to choose the ones (s)he wants to apply. Moreover, the classification allows one to compare the rules to closely related concepts such as similarities, implications, and equivalences. Finally, the classification shows that some interesting combinations of the criteria are not satisfied by any index.
منابع مشابه
Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملItemset Size - Sensitive Interestingness Measures for Association Rule Mining and Link Prediction
Association rule learning is a data mining technique that can capture relationships between pairs of entities in different domains. The goal of this research is to discover factors from data that can improve the precision, recall, and accuracy of association rules found using interestingness measures and frequent itemset mining. Such factors can be calibrated using validation data and applied t...
متن کاملSemantic interestingness measures for discovering association rules in the skeletal dysplasia domain
BACKGROUND Lately, ontologies have become a fundamental building block in the process of formalising and storing complex biomedical information. With the currently existing wealth of formalised knowledge, the ability to discover implicit relationships between different ontological concepts becomes particularly important. One of the most widely used methods to achieve this is association rule mi...
متن کاملEvaluating the Interestingness of Characteristic Rules
Knowledge Discovery Systems can be used to generate classification rules describing data from databases. Typically, only a small fraction of the rules generated may actually be of interest. Measures of rule intemstingness allow us to filter out less interesting rules. Classification rules may be discriminant (e + h) or characteristic (h + e), where e is evidence, and h is an hypothesis. For dis...
متن کاملClassification of objective interestingness measures
The creation of the interestingness measures for evaluating the quality of the association rule based knowledge plays an important role in the post-processing of the Knowledge Discovery from Databases. More and more interestingness measures are proposed by two approaches (subjective assessment and objective assessment), studying the properties or the attributes of the interestingness measures i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009